Supervised Learning: Choosing the right model

Mirco Schönfeld mirco.schoenfeld@uni-bayreuth.de

How to Design a Model: Feature Selection

Formulate characteristics that help distinguishing between classes.

For spam-detection: find words or combinations of words that indicate a mail being spam.

Classification using a model

Spam: Wholesale Fashion Watches -57% today. Designer watches for cheap ... Spam: You can buy Viagra Fr\$1.85 All Medications at unbeatable prices! ... Spam: WE CAN TREAT ANYTHING YOU SUFFER FROM JUST TRUST US ... Spam: Sta.rt earn*ing the salary yo,u d-eserve by o'btaining the prope,r crede'ntials!

Ham: The practical significance of hypertree width in identifying more ... Ham: Abstract: We will motivate the problem of social identity clustering: ... Ham: Good to see you my friend. Hey Peter, It was good to hear from you.... Ham: PDS implies convexity of the resulting optimization problem (Kernel Ridge ...

Curse of Dimensionality:

Including more features will improve classification conceptually but will render computation increasingly difficult.

Spam vs. Ham

Training the Model

3

Classification using a model

How to Choose a Model

4

Classification using a model

R			Correct class	
Model A:		Ham	Spam	
Spam-Filter	Ham	189	1	
reports	Spam	11	799	

Model B:		Correct class	
		Ham	Spam
Spam-Filter	Ham	200	38
reports	Spam	0	762

Good Classifications: The Confusion Matrix

5

Classification using a model

Model A:		Correct class	
		Ham	Spam
Spam-Filter	Ham	189	1
reports	Spam	11	799

Model B:		Correct class	
		Ham	Spam
Spam-Filter	Ham	200	38
reports	Spam	0	762

Measuring Goodness

6

Precision: Proportion of predicted positives that are truly positive \bullet good choice when we need to be very sure of prediction

Recall: Proportion of actual positives that are correctly classified \bullet good choice when as many positives as possible should be captured

TP

https://towardsdatascience.com/the-5-classification-evaluation-metrics-you-must-know-aa97784ff226

- TP
- TP + FP

ΓΡ		Correct	
+ FN		Positive (P)	Negative (
cted	Positive	True Positive	False Positive
Pred	Negative	False Negative	True Negative

Measuring Goodness

- Accuracy: Proportion of true results among total number of cases good choice when classes are balanced
 - TP + TN
 - TP + FP + FN + FN
- F_1 Score: harmonic mean between precision & recall a number between 0 and 1 good choice when we want a model with both good precision and recall
 - $2 * \frac{precisi}{precisi}$
 - Important variant F_{β} allows to apply a custom weight to precision & recall

ion * recall		Correct	
ion + re	call	Positive (P)	Negative (
cted	Positive	True Positive	False Positive
Pred	Negative	False Negative	True Negative

Prof. Dr. Mirco Schönfeld | Seminar Artificial Intelligence | v1.0

Measuring Goodness & more

Prevalenc	e	
Р		
$\overline{\mathrm{P}+\mathrm{N}}$		
accuracy	(ACC)	
100	TP + TN	$\mathbf{TP} + \mathbf{TN}$
ACC =	$\overline{P+N}$ =	$=\overline{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}}$
balanced	accuracy (I	BA)
$BA = \frac{2}{3}$	$\frac{\Gamma PR + TNR}{2}$	2
	-	

F1 score

9

is the harmonic mean of precision and sensitivity: $\mathrm{F}_{1} = 2 imes rac{\mathrm{PPV} imes \mathrm{TPR}}{\mathrm{PPV} + \mathrm{TPR}} = rac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$

phi coefficient (ϕ or r_{ϕ}) or Matthews correlation coefficient (MCC)

$$\mathrm{MCC} = rac{\mathrm{TP} imes \mathrm{TN} - \mathrm{FP} imes \mathrm{FN}}{\sqrt{(\mathrm{TP} + \mathrm{FP})(\mathrm{TP} + \mathrm{FN})(\mathrm{TN} + \mathrm{FP})(\mathrm{TN} + \mathrm{FN})}}$$

Fowlkes-Mallows index (FM)

$$\mathrm{FM} = \sqrt{\frac{TP}{TP + FP}} \times \frac{TP}{TP + FN} = \sqrt{PPV \times TPR}$$

informedness or bookmaker informedness (BM)

BM = TPR + TNR - 1

markedness (MK) or deltaP (Δp)

MK = PPV + NPV - 1

Diagnostic odds ratio (DOR)

$$\mathrm{DOR} = rac{\mathrm{LR}+}{\mathrm{LR}-}$$

sensitivity, recall, hit rate, or true positive rate (TPR) $ext{TPR} = rac{ ext{TP}}{ ext{P}} = rac{ ext{TP}}{ ext{TP} + ext{FN}} = 1 - ext{FNR}$ specificity, selectivity or true negative rate (TNR) $ext{TNR} = rac{ ext{TN}}{ ext{N}} = rac{ ext{TN}}{ ext{TN} + ext{FP}} = 1 - ext{FPR}$ precision or positive predictive value (PPV) $\mathrm{PPV} = rac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}} = 1 - \mathrm{FDR}$ negative predictive value (NPV) $\mathrm{NPV} = rac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FN}} = 1 - \mathrm{FOR}$ miss rate or false negative rate (FNR) $\mathrm{FNR} = rac{\mathrm{FN}}{\mathrm{P}} = rac{\mathrm{FN}}{\mathrm{FN} + \mathrm{TP}} = 1 - \mathrm{TPR}$ fall-out or false positive rate (FPR)

 $\mathrm{FPR} = rac{\mathrm{FP}}{\mathrm{N}} = rac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}} = 1 - \mathrm{TNR}$

false discovery rate (FDR) $\mathrm{FDR} = rac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TP}} = 1 - \mathrm{PPV}$ false omission rate (FOR) $\mathrm{FOR} = rac{\mathrm{FN}}{\mathrm{FN} + \mathrm{TN}} = 1 - \mathrm{NPV}$ Positive likelihood ratio (LR+) $LR+=rac{TPR}{FPR}$ Negative likelihood ratio (LR-) $LR-=rac{FNR}{TNR}$ prevalence threshold (PT) $\mathrm{PT} = \frac{\sqrt{\mathrm{TPR}(-\mathrm{TNR}+1)} + \mathrm{TNR} - 1}{(\mathrm{TPR} + \mathrm{TNR} - 1)} = \frac{\sqrt{\mathrm{FPR}}}{\sqrt{\mathrm{TPR}} + \sqrt{\mathrm{FPR}}}$ threat score (TS) or critical success index (CSI) $\mathrm{TS} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN} + \mathrm{FP}}$

Correct

		Positive (P)	Negative (
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

How to Choose a Model

Classification using a model

Minimize error rate

Model A:		Correct class	
		Ham	Spam
Spam-Filter	Ham	189	1
reports	Spam	11	799

Spam vs. Ham

Model B:		Correct class	
		Ham	Spam
⁹ Filter	Ham	200	38
reports	Spam	0	762

11

Large project set out to evaluate ML application to problems in healthcare Scenario: predicting pneumonia risk Goal: predict probability of death for patients with pneumonia

The most accurate model of the study was a multitask neural net. Outperformed other models by wide margin but was still dropped. Why?

One rule-based system learned the rule "patient has asthma \rightarrow lower risk" Reflected a true pattern in training data

The best model was the least intelligible one – was deemed to risky No way of checking the features that were picked up

Cooper, Gregory F., et al. "An evaluation of machine-learning methods for predicting pneumonia mortality." Artificial intelligence in medicine 9.2 (1997): 107-138. Caruana, Rich, et al. "Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission." Proceedings of the 21th ACM SIGKDD. 2015.

Goals of Interpretable Models

12

- Trust: Identify and mitigate *bias* Recognizing bias in a black-box algorithm is very hard
- Causality: Account for context Helps you understand how the factors included in the model led to the prediction
- Informativeness: Extract knowledge Helps you determine if patterns that appear to be present in the model are really there. Rather learning from the model than evaluating it (compared to identifying bias)
- Transferability: Generalize Models are trained on carefully collected datasets to solve narrowly defined problems. Interpretable models should help you determine if and how they can be generalized
- Fair and Ethical Decision-Making algorithmic decision-making mediates more and more of our interactions. Need a way to make sure that decisions conform to ethical standards

Properties of Interpretable Models

Transparency 1.

13

- Simulatability Transparency at the level of the entire model
- Decomposability / Intelligibility Transparency at the level of the individual components, e.g. parameters
- Algorithmic Transparency Transparency at the level of the training algorithm

Properties of Interpretable Models

- 2. Post-hoc Interpretability
 - **Text Explanations**
 - Visualization

14

- Local Explanations
- Explanation by Example

Pichler, M., & Hartig, F. (2023). Machine learning and deep learning—A review for ecologists. Methods in Ecology and Evolution, 14, 994–1016. https://doi.org/10.1111/2041-210X.14061

How to select a model?

- Quality of predictions i.e. performance in terms of a quality metric
- Speed

16

i.e. training time, prediction time

Robustness

i.e. handling noise or missing values and still classify correctly

Scalability

i.e. computational efficiency

- Interpretability • subjective means
- Other

Thanks. mirco.schoenfeld@uni-bayreuth.de https://xkcd.com/1838/