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Prepare data

Chose classificator

Train it

Test it

Validate it

Results do not look good

Repeat

What if…
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Repeated testing leads to overfitting

Once the validation data is used, do not go back to improve classification!

What‘s the problem?
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Two types of classification errors:

1. Training error – misclassification on training data

2. Generalization error – expected error on unseen data

Overfitting:

Good results on training data (low training error) and 

bad results with test/validation data (high generalization error)

Error significantly underestimated – severe problem in application scenarios

Detecting overfitting:

Evaluation of training with new data – NOT using training data!

Beware of Overfitting
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Split training data at least in training and testing (Popular splits: 2:1 / 90:10)

Recommended: Split data in training, testing and validation

Splits: 80:10:10

Choose best classificator only on training and test data

Estimate accuracy & tune parameters of model

Keep validation-data secret! Use that only once to

estimate the generalization power of the model!

Terminology of test and validation data is often mixed up. 

Training Test Split
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Cross-validation is a technique to help choosing classificator and optimal parameters

Partition data in k non-overlapping parts of equal size

During ith iteration, use data in partition for validation, all other data as training data

Quality of classificator: 

mean over all k iterations

Cross-Validation
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https://en.wikipedia.org/wiki/File:K-fold_cross_validation_EN.svg
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Cross-validation methods which learn and test on all possible 

combinations to divide the original sample into training and test set.

Leave-p-out cross-validation:

Use p observations as the test set and the remaining observations as training set.

Leave-one-out cross-validation: 

Leave-p-out cross validation with p=1

Means finding one classificator for each instance – N classificators!

Exhaustive Cross-Validation
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Imbalance:

Number of samples of different classes are diverging significantly.

Often, collecting samples of a certain class is difficult because these are rare events.

Consequences of building models using imbalanced data:

� Bias

Classifiers are more sensitive to detecting the majority class

� Optimization metrics

Metrics like accuracy may not report true performance

Has implications for sampling for cross validation!

Imbalanced data
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Balancing classes by removing samples from the majority class (under-sampling) and/or

adding more examples from the minority class (over-sampling)

Various strategies, e.g. under-sampling by generating cluster-cendroids, 

over-sampling by synthesizing elements (SMOTE), …

Resampling
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https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets



� Evaluation and task are adapted to solution

� Preprocessing of data tells something about solution

� Unbalanced data

� Little variety of data

� New observations

� Insufficient data

Overfitting can occur on subtle ways
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Choosing an appropriate algorithm requires making assumptions

With no assumptions, there will be no universal algorithm „better“ than random choice

No Free Lunch Theorem
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Wolpert, David H., and William G. Macready. "No free lunch theorems for optimization." IEEE transactions on evolutionary computation 1.1 (1997): 67-82.

[…] what an algorithm gains in performance on 

one class of problems is necessarily offset by its 

performance on the remaining problems;


